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ABSTRACT 
The use of wind speed data is of undeniable interest in the operation of wind farms. As such, the techniques of 

artificial generation of wind data are used in case the need to have a large database is required. Several methods 

are used for this purpose. The most classic are those of normal and Weibull distributions. In this study, a new 

approach based on wavelet transformation is introduced. It is compared to classical methods. The results show 

that the wavelet method is an adequate alternative to conventional methods. 

 

KEYWORDS: Normal Distribution; Weibull distribution; wavelet. 

1. INTRODUCTION 
Rapid growth in energy requirements, the depletion of hydrocarbon stocks and environmental degradation have 

led men to turn to clean, renewable energy sources, including wind energy [1,2]. Nevertheless, the exploitation 

of wind energy, to be sustainable, must take into account certain requirements. These requirements include both 

qualitative and quantitative aspects of wind speed data [3]. The size of a database is relative to the time period 

during which the data was saved. More often than not, a larger base is needed, as in the case of the installation 

of a wind farm or a civil engineering structure. The wind speed, to be exploitable, must be within a required 

range [4]. An artificial generation of data, which to a large extent reflect the reality, is a necessary step to 

achieve satisfactory results. To do this, modeling techniques have been developed. The present work introduces 

a new approach to artificial generation based on the wavelet transform. Statistical methods such as normal 

distribution and Weibull will also be presented. The results of these different methods will be the subject of a 

comparative study. 

 

2. MATERIALS AND METHODS 
In this study, statistical methods were used to account for the characteristics of wind speed. The comparison of 

the reproduction performances of the long series of hourly speeds proves decisive for the validation of the 

method. In this regard we have hourly wind speed data collected by the US University Woayoming, a 

department of NASA, concerning the Lomé site. The choice of normal and Weibull distributions was made in 

order to generate uncorrelated and random data respecting the distribution. The statistical methods mentioned 

above are briefly presented. Particular emphasis will be placed on the wavelet method in this paper. 

 

a. Normal distribution 

The normal law, or Gaussian law, is the most widespread and useful statistical law because it represents many 

random phenomena [5,6].  

 

A normal distribution corresponds to the probability distribution of a continuous random variable whose curve is 

perfectly symmetrical, unimodal and bell-shaped. In addition, many other statistical laws can be approximated 

by the normal law, especially in the case of large samples. It also has the advantage of relying only on two 

parameters: the mean and the standard deviation. Its mathematical expression is given by relation (1). 
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b. Distribution of weibull 

The Weibull distribution [7,8] presents itself as a special case of generalized gamma distribution. There are two 

forms of Weibull distribution: 

In this study, we will use the two-parameter Weibull distribution. 

The expression of Weibull distribution law (probability density) with two parameters is given by relation (2). 
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V is the wind speed in m / s; 

C, the scale factor (dimension of a speed); 

K, the form factor (dimensionless) characterizing the dissymmetry of the distribution. 

C and K are the parameters of the distribution. 

The distribution law F (V) is given by relation (3). 
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F (V) is the probability that the wind speed is less than V. 

The parameters of the Weibull distribution are determined by a numerical method based on the least squares 

method. 

 

The artificial generation by the Weibull distribution is similar to that of the normal distribution. Only the curve 

of the Weibull distribution is obtained as a result of the numerical determination of the Weibull parameters 

(form factor K and scale factor C) characterizing the empirical series. 

 

c. The wavelet method 

The wavelet transformation was introduced in the early 1980s by the French geophysicist Morlet [9]. Interested 

in the study of seismic signals involved in oil exploration, he realizes that the "classical" spectral 

decompositions (Fourier transform and Fourier transform with sliding window [10]) are unsuited to the analysis 

of signals combining several characteristic scales. To remedy this, he proposes a transformation that allows a 

representation of the signal simultaneously in time (or in space) and in scales. The signal is no longer 

decomposed into frequency components, but into a linear combination of elementary functions located at 

different points of space and having different sizes. These elementary functions are all constructed from a single 

parent function, by dilations and translations of it according to relation (4). 
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In 1984, with Grossman, Morlet gives a rigorous framework to the concepts of this new space-scale 

decomposition [11,12]. In particular, it demonstrates that for the initial signal to be effectively decomposed as a 

linear combination of elementary functions, the mother function must have some oscillations and thus resemble 

a wavelet (small wave). This is how the wavelet theory is born. 

 

i. Definition and properties 

Due to the richness of the concepts it brings into play and the efficiency of its algorithmic implementation, 

wavelet analysis has been successfully exploited in fields as varied as functional analysis, theoretical physics, 

analysis and processing of signal and images, fractal theory, etc. 

 

The wavelet decomposition consists in breaking down the signal s (which is the wind speed in our case) as a 

linear combination of wavelets [13,14]. This decomposition is a function of the two variables a and b, which 

"evaluates" the relevance of using the wavelet in the description of s. 

 It is naturally defined by the relation (5). 
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where is the scalar product of two functions and the conjugate of. The parameter b is a position parameter (or 

temporal) and varies in IR while a is a scale parameter (or frequency) and is strictly positive. Thus, the more the 

wavelet "resembles" the velocity signal s (x) locally (i.e., over a distance proportional to a) around the point x = 

b, the more the absolute value of the wavelet transform will be great. 

 

By linearly recombining each wavelet weighted by the wavelet coefficient associated with it, we obtain the 

reconstruction formula expressed by the relation (6). 
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where is a constant number (which depends only on the chosen wavelet). 

Note that this reconstruction formula is correct only in the case where an admissibility condition verifies that it 

has "enough" oscillations. We will content ourselves here with supposing that the mother function is of average 

zero (relation 7). 
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Such a function is called an analyzer wavelet. 

Condition (8) leaves a lot of freedom on the choice of the wavelet analyzer. This will be chosen according to the 

problem dealt with; thus, as we shall see later, the class of wavelet analyzers that constitute the successive 

derivatives of the Gaussian function is generally used (Relation 8). 
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These functions are and have the advantage of being well localized both in the direct space and in the Fourier 

space. We have shown, in Figure 3, the functions for N = 1, 2 and 5. It should be noted that the wavelet is often 

used in the literature; it is called "Mexican hat" because of its characteristic shape (Fig.3). As we can see, the 

more N increases, the more is oscillating. This can be explained by the fact that the relation (9) is satisfied.

.Nq0,0dx)x(x )N(q    (9) 

 

The function thus has its N first null moments. As we will see later, this property proves to be crucial in the 

analysis of the singularities of a signal. Figure 3 shows the wavelet 
)1(  in (a), the wavelet 

)2(  in (b) and the 

wavelet 
)5( in (c). 
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Figure 3: Three examples of wavelet analyzers of the family 
)N(

of Gaussian derivatives (rel.9) 
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Moreover, there are other forms of wavelets such as the wavelet of Morlet and the wavelet of Haar. The latter 

will be the subject of our study on the pages to come. 

 

ii. Algorithm 

The model proposed in this paper measures, by multiresolution analysis, the weights of the wavelets associated 

with the speed signal at each level of resolution. The next step is the simulation of the data. To achieve this step 

you have to choose between two alternatives: 

-  simulate the data from the measured weights; 

-  simulate the data from the generation of details. 

 

To appreciate the real performance of the model, we compute the average error between the speed signal and 

that generated by the model. Here is the algorithm itself. 

 

a. Calculation of weights 

The multiresolution analysis as described above, reveals coefficients of scale (or approximation) and 

coefficients of wavelet (or detail). The scaling coefficients are obtained by convolution of the signal s (x) with a 

scaling function noted in relation (10) : 

  dx)kx2()x(s2c j2
j

k,j                                    (10) 

 

Where j is the resolution index and k is a position parameter. 

In the case of this project, it is used the Haar wavelet [4], shown in Figure 5, for its simplicity and the 

orthogonality of its base. Thus, the associated scale function is given by relation (11). 
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It is represented in figure 4. 

 
Figure 4: Scale function for the Haar wavelet 

 

The translated and expanded version of this function is commonly referred to as (12).     
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Like the scale coefficients, the wavelet coefficients are derived from convolution products of the speed signal     

s (x) with a function, this time called the wavelet analyzer or wavelet function. This is indeed the Haar wavelet 

defined by the relation (13) and represented in figure 5. 
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Its representation is recorded in Figure 5. 

 

 
Figure 5: Wavelet of Haar. 

 

The coefficients of detail (or wavelet) noted k,jd are obtained by the relation (14).  
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         b. Simulation 

From the scale and wavelet coefficients previously calculated, respectively find the approximation and detail 

signals associated with each level of analysis. Thus, the approximation is obtained by the relation (15).
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The details are found by the relation (16). 
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From one approximation to another, we lose information; this loss corresponds to the detail of the higher level 

and results in the relation (17). 
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Recurrently we have the relationship (18) 
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where, n is a natural integer such that: 1nn 2N2  , N being the length of the series. The member-to-member 

sum leads to the relation (19). 
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Which is the equivalent of the relation (20). 
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 being logically the approximation of level 0, it is identical to the signal itself. 
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In turn, the signal is obtained from the last approximation and the details following the relation (22).
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This simulation method is very interesting because it leads to a modeling error, probably, very small. This 

accounts for the reliability of the model. Nevertheless, there is a question of parsimony. Indeed, the sum of the 

lengths of all the coefficients entering in this simulation method is equal to the length of the signal. This seems 

to greatly reduce the interest of this approach. To answer this question of parsimony, one benefits from an 

important characteristic of the wavelets and particularly of the wavelet of Haar. 

 

As noted above, the approximations, with the Haar wavelet, are nothing more than averages of the speed signal. 

Which imposes an almost zero average on the details. They are therefore assimilated to turbulence signals. The 

sum of the details usually has a distribution close to a known distribution. We can thus characterize by the scale 

coefficients at the maximum level (often two coefficients) and the distribution parameters of the sum of the 

details. In the case of this study, the sum of the details is characterized by Gaussian law. It goes without saying 

that we have two distribution parameters. The number of parameters of the model is thus reduced to four (4), 

hence parsimony.  

 

The wavelet transform is a very valuable tool that can not be circumvented today in signal processing. Besides 

its representation as faithful as possible, its sharp analysis offers a sort of real microscope for the analysis of 

signals. The time-frequency representation and the power in detection of singularity are his weapons. All these 

benefits will allow us to realize the model of the wind speed based on the algorithm developed here. The 

application of the model to the Lomé site will essentially be the subject of the following section. 

 

3. RESULTS AND DISCUSSION 
 

Statistical methods and wavelet methods will be used and compared. 

 

Presentation of the data 

The empirical data on which this study is based are provided by the WOAYOMING website. These are hourly 

data. These data include, among others, the date and time of recording, temperature, wind direction, pressure 

and wind speed. 

 

The data collected covers a period of eighteen months and cover the period from July 2017 to December 2018. 

The parameter that interests this project is the speed. Figure 6 shows the frequency polygon of the wind speed at 

the Lomé site. 
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Figure 6: Frequency polygon 

 

The frequency polygon is the curve that at each possible velocity value associates the corresponding frequency 

in the velocity series. On this polygon it appears that the most frequent speed is 3 m / s. The speed of 11m / s is 

nonetheless non-existent in the data, since its frequency is strictly zero. The maximum speed is 12 m / s. Table 1 

shows the statistical parameters of the observed data.  

 
Table 1: Statistical parameters of the wind speed at the Lomé site. 
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The speed signal is temporally as shown in figure 7. 

 
Figure 7: The wind speed signal at the Lomé site 

 

Statistical methods 

Adjustment by the normal distribution 

Normal distribution plays a very important role in statistics, and many tests can only be applied if the data is 

reasonably normal. It is therefore important to be able to compare the observed empirical distribution with a 

theoretical normal distribution. We will thus superimpose the histogram obtained from the real speed data and a 

curve representing a normal distribution of same average and standard deviation. If the normal curve passes 

exactly through the vertices of the histogram, the distribution is perfectly normal. This is of course only 

exceptionally the case, and all empirical distributions depart more or less from normality. This technique is  
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called adjustment of a distribution by the normal distribution. Applied to wind speed, the adjustment by the 

normal distribution is shown in Figure 8. 

 

 
Figure 8: Adjustment of the empirical distribution by the normal distribution 

 

It appears clearly, with regard to the result of the adjustment recorded in figure 8, that the probability density 

function of the normal law of the data series nearly matches the histogram. On the other hand, the probability of 

occurrence of zero velocity (0m / s) does not respect the normal law. 

 

However, the state of the approximation will be much more revealed in the comparative study of the two 

methods. Now let's look at the adjustment by the Weibull distribution. 

 

Adjustment by the Weibull distribution 

The model derived from the Weibull distribution receives as input two parameters characterizing the real series 

of velocity: the scale factor C and the form factor K. These are parameters intrinsic to the site. For the Lomé 

site. These parameters were determined from the available speed data. 

 

Result 

The normal distribution and Weibull distribution parameters are calculated and stored in Table 2. 

 
Table 2: Normal and Weibull Distribution Parameters 

 Settings 

Weibull distribution C= 3.6195 K =   1.7558 

Normal Distribution µ=   3.0221 σ = 2.1063 

 

Figure 9 illustrates the probability density function of the Weibull distribution compared to the histogram of the 

observed data series. 
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Figure 9: Weibull distribution function fitted to the histogram of observed data 

 

It is found that the Weibull distribution also adjusts the empirical distribution of the data set. However it would 

be difficult even clumsy to say, visibly, anything about the best approximation. The comparative study of the 

two models will draw a good conclusion. 

 

Comparative study of the probability density functions of the normal distribution and Weibull 

In Figure 10, the distribution functions of Normal and Weibull are juxtaposed in order to stand out, which is 

better adjusted to the histogram corresponding to the series of data observed. 

 

 
Figure 10: Normal and Weibull Distribution Functions Adjusted to the Data Series 

 

From the juxtaposition of the two distributions and the histogram of the actual distribution, it is clear that it is 

the normal distribution that adjusts for the best. 

 

After the results of the statistical models, we approach the wavelet method. 

 

Wavelet method 

It will first be presented a brief analysis of the speed signal by the Haar wavelet. Then, we will discuss the 

detection of singularities and finally the validation results will be presented. 

 

Signal analysis by the Haar wavelet 

There is a series of eighteen (18) month data from July 2017 to December 2018, giving a total of 13,176 data, 

which are hourly speeds. The maximum level of wavelet analysis is important. At this level, the number of 

coefficients is as small as possible. It is equal to two (2). From one level to another directly higher, the ratio of  
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the numbers of coefficients is two. Which leads to the relation (23) giving the number of possible 

decompositions. 

 )N(logEn 2
                  (23) 

 

where N = 13176 in our case (the number of data); and E symbolizes the whole party function. Which gives       

n = 13. 

 

The results of the analysis are shown in Figure 11 which represents the wavelet coefficients at the different 

levels and the scaling coefficients at the thirteen level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Wavelet coefficients from level 1 to level 13 and from approximation (or scale) to level 13 

It should be noted that from one level to another (consecutively) the number of coefficients decreases by half, 

this is also one of the advantages of the wavelet transform: compression. Thus, instead of storing N data, with 

the wavelets we will store according to the desired resolution j keeping most of the information. 

The detail coefficients correspond details according to the levels; same for the approximation coefficients. These 

signals are thus recovered from the coefficients of figure 12 and represented in Figure 13 

 

 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 2000 4000 6000 8000
-10

-5

0

5

10
coefficients de détail niveau 1

(a)

0 1000 2000 3000 4000
-10

-5

0

5

10
coefficients de détail niveau 2

(b)

0 500 1000 1500 2000
-10

-5

0

5

10
coefficients de détail niveau 3

(c)

0 500 1000
-20

-10

0

10

20
coefficients de détail niveau 4

(d)

0 200 400 600
-20

-10

0

10

20
coefficients de détail niveau 5

(e)

0 100 200 300
-20

-10

0

10

20
coefficients de détail niveau 6

(f)

0 50 100 150
-20

-10

0

10

20
coefficients de détail niveau 7

(g)

0 20 40 60
-10

-5

0

5

10

15
coefficients de détail niveau 8

(h)

0 10 20 30
-10

-5

0

5

10

15
coefficients de détail niveau 9

(i)

0 5 10 15
-20

-10

0

10

20

30
coefficients de détail niveau 10

(j)

0 2 4 6 8
-30

-20

-10

0

10

20
coefficients de détail niveau 11

(k)

1 2 3 4
0

10

20

30

40
coefficients de détail niveau 12

(l)

1 1.5 2
19

20

21

22

23

24

25

26
coefficients de détail niveau 13

(m)

1 1.5 2
220

230

240

250

260

270

280

290

300
coefficients d'approximation

(n)

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[Bokovi * et al., 8(8): August, 2019]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [11] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: The signal s, the coarsest approximation (level 13), the details (from level 13 to level1), and the sum 

of the details. 

What is striking here is the fact that the length of the details is independent of the level of analysis. 

Nevertheless, the effect of scale is felt at the level of the amplitudes. The results of this analysis are a proof of 

efficiency of the wavelets. They make it possible to identify the variations, even the smallest ones, of the wind 

speed on the Lomé site. The representation space-scale, being one of the wonderful assets of the wavelets, the 

following section will leave this representation to evaluate the homogeneity of the signal. 

iii. Validation of the wavelet model 

To validate the wavelet model, a comparison between the statistical parameters of the signal simulated by the 

model and those of the reference signal was made as shown in Table 3. 

 

 

 

 
 

Table 3: Validation of the wavelet model by the statistical parameters 

 

Settings Real series Simulated series 
Absolute relative error (%) 

Average 3.0221 3.1011 
2.6 

Médian 3.0000 3.0385 
1.2 

Mode 3.0000 3.0000 
0 

Maximum 12.0000 11.0205 
8.1 

Minimum 0.0000 0.0000 
- 

Standard deviation 2.1063 1.9832 
5.8 

Skewness 0.3055 0.3167 
3.6 

Kurtosis 2.4185 2.6326 
8.8 
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This table shows that the model provides a signal much like the reference. All absolute relatives errors are less 

than 10%. Figure 14 compares the histogram of the signal simulated, by the mathematical model of wavelets, 

with that of the real signal. 

 

 
Figure 14: Validation of the wavelet model 

 

4. CONCLUSION 
In this paper, an algorithm based on wavelet decomposition has been proposed to generate the series of wind 

speeds on a wind power site. This algorithm is applied to the dataset collected at the Lomé site. The results 

obtained show us that the proposed algorithm presents a weak modeling error compared to the models of 

artificial generation from the Gauss and Weibull law. Thus, the model based on the proposed wavelet 

decomposition can be used to generate  hourly wind speed time series at the Lomé wind farm with an absolute 

relative error less than 10%. 
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